Parent Portal



Year 7
Terms 1 and 2 Terms 3 and 4Terms 5 and 6
Forces (contact forces and gravity) Organisms (cells and movement) Matter (particle models and elements) Waves (sound and wave effects) Waves (light and electromagnetic spectrum) Genes (Human Reproduction) Reactions (Types of Reaction and Chemical Energy) Earth (Universe) Ecosystems (Interdependence and plant reproduction) Reactions (Acids and Alkalis)
Skills: To use the formula Weight (N) = mass(Kg) x gravitational field strength(N/Kg) To explain why multicellular – organisms need organ systems to keep their cells alive To explain how antagonistic muscles produce movement around a joint. To describe the properties of solids, liquids and gases. To represent atoms, molecules and compounds using the particle diagram. Skills: To identify the wave diagram and its component parts To construct ray diagrams to show how light reflects To identify the uses of different parts of the electromagnetic spectrum To explain whether characteristics are inherited, environmental or both. To show the main stages in the development of a foetus To use experimental observations to distinguish between exothermic and endothermic reactions Skills Explain why different places on Earth experience different lengths of daylight and the amounts of sunlight during the year. Describe how a species population changes as its predator/prey population changes Identify parts of a flower and link their structure to their function To identify the best indicator to distinguish between solutions of different pH.
Year 8
Terms 1 and 2Terms 3 and 4Terms 5 and 6
Forces (speed) Electromagnets (current and potential difference) Organisms (breathing and digestion) Matter (periodic table and separation techniques) Energy (energy costs, energy transfers, work, heating and cooling Genes (Variation and inheritance) Ecosystems (Respiration) Reactions (Metals and Non-metals Forces (Pressure) Electromagnets (Magnetism and Electromagnets) – Genes (Evolution) Ecosystems (Photosynthesis) Earth (Earth’s Structure)
Skills: To use the formulas Speed = distance(m)/ time(s) or distance time graphs to calculate speed Resistance(Ω) = Potential difference(V) / Current(A) Explain how exercise, smoking and asthma affect the gas exchange system Describe the possible health effects from an unbalanced diet To show patterns in the periodic table To use different separation techniques to separate mixtures depending on their properties Skills To calculate the cost of home energy usage. To use food labels to calculate the amount of energy a person needs. To show how energy is transferred between different energy stores To use the formula Work done(J) = force(N) x distance (m) To identify how an objects temperature changes with heating and cooling To explain the specific activities involved in aerobic and anaerobic respiration To describe oxidation, displacement and metal – acid reactions using word diagrams. Skills to use the formula Pressure = force/ area To describe the process of photosynthesis and the factors that affect it To use evidence to explain why a species has become extinct or adapted to changing conditions To show a relationship between DNA, chromosomes and genes. To explain why a rock has a particular property based on how it was formed
Year 9
Terms 1 and 2Terms 3 and 4Terms 5 and 6
B1 – Cell biology C1 – Atomic structure and the periodic table P1 Energy B2 – Organisation C2 – Structure and Bonding P2 - Electricity B2 – Organisation C2 – Structure and Bonding P2 - Electricity
B1 – Microscopy and cells, development of microscopy techniques, Differences between animal and plant cells and describe the function of cell organelles. Transport of material into and out of a cell by diffusion, osmosis and active transport. Cell division by mitosis. Uses of stem cells and the advantages and disadvantages of their use. C1 – Develop the understanding that atoms are fundamental chemical building blocks. Interpret chemical formulae. Law of conservation of mass, balancing equations. Differences between compounds and mixtures and different separation techniques. Development of the atomic model, draw electronic structures of the first 20 elements. Development of the periodic table. Identify the patterns in the periodic table, group 1, 7, 0 and the transition elements. P1 – Understanding of energy and energy transfers, development of an energy stores, conservation of energy through changes in the gravitational, kinetic and elastic stores. Dissipation of energy. Efficiency applied to electrical devices. Rate of energy transfer. Power and power ratings. Energy transfers in heating, cooling, absorption and emission. Specific heat capacity of an object. Reducing energy transfers in the home. How electricity is generated from renewable and non-renewable energy resources and the environmental impacts. B2 – Principles of organisation, differentiation and differentiation of specialised cells. Study of the digestion system, Chemical digestion and the breakdown of carbohydrates, proteins and fats. Use of enzymes and their action C2 – states of matter, covalent, ionic and metallic bonding. Structure of simple and giant molecules. Allotropes of carbon. P2 – Concept of an electric field surrounding charged objects causing attraction or repulsion between them. Electrical circuits – parallel and series. Calculation of resistance in a wire. Circuit components and their uses. Current and potential difference in a series and parallel circuit. B2 – Organisation of plants and animals. Recognise the components of blood, describe their functions. Identify the 3 types of blood vessels and the importance of a double circulatory system. Structure and function of the heart. Breathing and gas exchange in the lungs. Identify the different plant tissues and their functions. Transpiration in plants. C2 – Nanoparticles, their properties and to explain how the surface area to volume ratio of nanoparticles is different to bulk materials and how this affects their use. P2 – Comparison of AC and DC. Description of UK mains supply. Relationship between power and the resistance of components. Efficiency of appliances and the system of energy efficiency ratings
Year 10
Terms 1 and 2Terms 3 and 4Terms 5 and 6
B3 – Infection and Response C3 - Quantitative chemistry P3 - Molecules and matter B4 – Bioenergetics C4 – Chemical Changes P4 – Atomic structure (Radioactivity) B5 – Homeostasis and response C5 – Energy changes C6 - Rates of reaction P5 Forces
B3 – How the concept of health is affected by communicable and non-communicable diseases. Identify the role of pathogens (bacteria, viruses and protists) in the spreading of diseases. Development of methods to control infection. The function of the immune system. Treatment of disease using painkillers and antibiotics. Development of vaccines’. Clinical trials. Risk factors for a disease. Study of different types of cancer. Environmental impacts on health – smoking, alcohol and ionising radiation. C3 Calcualti0on of relative formula mass. Molar calculations and the significance of Avogadro’s constant. Use of moles to balance equations. Calculation of percentage yield and the atom economy of a reaction. Calculations of concentration. Use of titrations to calculate concentration of an unknown. P3 – Density of an object. States of matter and kinetic theory. Concept of the internal energy of a substance. Calculation of the latent heat of fusion and vaporisation. Relationship between pressure and temperature of a fixed volume of gas. Boyle’s law – relationship between gas pressure and volume. B4 – Study of photosynthesis and the factors that affect it. Description of the limiting factors in a photosynthesis reaction. How glucose is used in respiration. Use of plant minerals to promote healthy growth. Use of mitochondria in respiration. Study of aerobic and anaerobic respiration. C4 – Development of understanding of the reactivity series. Displacement reactions. Production of salts from metals and acids, acids and bases and acids and carbonates. pH scale and hydrogen ion concentration. Differences between strong and weak acids. P4 – Description of how the nucleus of an atom was discovered by radiation emitted during nuclear decay. Development of the model of the atom from the plum pudding model to Bohr’s model. Alpha, beta and gamma radiation. Half-life of a radioactive element. Nuclear radiation in medicine. Nuclear issues B5 – Homeostasis. The nervous system, structure and function. The working of a reflex arc. Controlling body temperature, blood glucose concentrations and the levels of water in the body. The role of the pituitary gland in homeostasis. Hormones in human reproduction, use of contraception drugs on fertility. The effect of light on the growth of plants. C5 – Electrolysis and the extraction of aluminium. Exothermic and endothermic reactions. Energy transfers in a chemical reaction. Energy transfer diagrams. Chemical cells and batteries. Fuel cells C6 – Factors that affect the rate of a reaction including temperature, surface area, concentration, pressure and the use of a catalyst. Describing the rate of a reaction using the collision theory. Reversible reactions. Use of Le Chatalier’s principle to explain the effect of temperature and pressure on the position of equilibrium. P5 – Comparison of scalars and vectors. Balanced and unbalanced forces and the application of Newton third law. Use of free body diagrams to show the forces acting on it. Determination of the centre of mass of an object. Application of levers and gears in increasing force. Use of parallelogram of forces to determine magnitude of a resultant force.
Year 11
Terms 1 and 2Terms 3 and 4Terms 5 and 6
B5 – Homeostasis and response B6 – Inheritance, variation and evolution C6 – Rates of reaction C7 – Organic Chemistry C8 - Chemical analysis P5 – Force P6 - Waves B6 – Inheritance, variation and evolution B7 Ecology C9 – Chemistry of the atmosphere C10 – Using resources P7 – Magnets and electromagnets P8 – Space (triple science only) Revision and exam preparation
B5 – Removal of waste products from the body. The role and function of the kidneys. Treatment of kidney failure and the role of dialysis. B6 – Evolution by natural selection. Selective breeding. Genetic engineering. Cloning. Ethics of genetic technologies C6 – Factors that affect the rate of a reaction C7 – Hydrocarbons. Fractional distillation of crude oil. Properties of hydrocarbons and the reactions of hydrocarbons. Structures of alcohols, carboxylic acids and esters. Reactions and uses of alcohols, carboxylic acids and esters. Addition and condensation polymerisation. Natural polymers and DNA. C8 – Pure substances and mixtures. Analysing chromatograms. Testing for gases. Tests for positive and negative ions. The use of instruments in analysis. P5 – Pressure and surfaces. Pressure in liquids. Atmospheric pressure. Up thrust and flotation. P6 – The nature and properties of waves. Reflection and refraction. Sound waves and the use of ultrasound. The electromagnetic spectrum. Light, infrared and radio waves. Use of the EM spectrum in communication .UV, X ray and gamma rays. X- rays in medicine. Reflection and refraction of light. Light and colour. The use of lenses B6 – The history of genetics. Theories of evolution. Darwin’s theory of evolution. Evidence for evolution. Fossils and extinction. Antibiotic resistant bacteria. Classification. B7 – The importance of communities. Distribution and abundance of organisms in their environment. Competition in plants and animals. Adaptation of plants and animals. Recycling. The carbon cycle. The human population explosion. Pollution. Global warming. Maintaining biodiversity. Food production. C9 – History of the atmosphere. Our evolving atmosphere. Greenhouse gases. Global climate change. Atmospheric pollutants. C10 – Finite and renewable and renewable resources. Safe water to drink. Treating waste water. Extracting metals from ores. Life cycle assessments. Recycling, reusing and reducing waste. Rusting. Useful alloys. Properties of polymers, glass ceramics and composites. Making ammonia – the Haber process. Making fertilisers. P7 – Magnetic fields and the magnetic fields of electric currents. Electromagnets in a device and the use of electromagnets. The motor effect. The generator effect. Transformers in action. P8 – (physics only) The formation of the solar system. The life history of a star. Planets, satellites and orbits. The expanding universe. The beginning and the future of the universe Use of exam questions and past papers to prepare the students for the final exams. Review of required practical’s and relating them to exam questions.


Making the right choice of secondary school for your child is a big decision, I thank you for your interest in Frederick Gent. I trust that you will find this website interesting and informative.

What Students & Parents are saying

“I’m so glad my daughter has changed school to come to Frederick Gent. She is happier than ever and the school looks great” Parent

‘There’s always a teacher to talk to when I need advice without being judged.’ Student

FGS staff are always encouraging, supportive, helpful and willing to go beyond to help us achieve our grades” Student

“When you are not sure the teachers always have ways to help you out” Student